1,312 research outputs found

    Shock induced vaporization of anhydrite CaSO4 and calcite CaCO3

    Get PDF
    Discovery of abundant anhydrite (CaSO4) and gypsum (CaSO4.2H2O) in the otherwise carbonate sediments comprising the upper portion of the rocks contained within the Chicxulub impact crater has prompted research on the shock-induced vaporization of these minerals. We use a vaporization criterion determined by shock-induced entropy. We reanalyze the shock wave experiments of Yang [1]. He shocked 30% porous anhydrite and 46% porous calcite. Post-shock adiabatic expansion of the sample across a 5 mm-thick gap and then impact upon an aluminum witness plate backed by LiF window that is monitored with a VISAR. Reanalysis uses Herrman's P-alpha model [2] for porous materials, and a realistic interpolation gas equation-of-state for vaporization products. Derived values of the entropies for incipient and complete vaporization for anhydrite are 1.65±0.12 and 3.17±0.12 kJ(kg.K)–1, and for calcite these are 0.99±0.11 and 1.93±0.11 kJ(kg.K)–1. Corresponding pressures for incipient and complete vaporization along the Hugoniot of non-porous anhydrite are 32.5±2.5 and 122±13 GPa and for non-porous calcite are 17.8±2.9 and 54.1±5.3 GPa, respectively. These pressures are a factor of 2–3 lower than reported earlier by Yang

    Shock temperatures in calcite (CaCO3): Implication for shock induced decomposition

    Get PDF
    The temperatures induced in crystalline calcite upon planar shock compression (95–160 GPa) are reported from two-stage light gas-gun experiments. The temperatures are obtained fitting 6-channel optical pyrometer radiances in the 450 to 900 nm range, to a Planck radiation law temperature varied from 3300 to 5400 K. Calculations demonstrate that the temperatures are some 400 to 1350 K lower than if either shock-induced melting and/or disproportionation of calcite behind the shock front was not occurring. Here calcite is modeled as disproportionating into a molecular liquid, or a solid CaO plus CO2 gas. For temperature calculations, specific heat at constant volume for one mole of CO2 is taken to be 6.7R as compared to 9R in the solid state; whereas calcite and CaO have their solid state values (15R and 6R). Calculations also suggest that the onset of decomposition in calcite to CaO and CO2 during loading occurs at ~75±10 GPa, along the Hugoniot whereas decomposition begins upon unloading from 18 GPa. The 18 GPa value is based on comparison of VISAR measurements of particle velocity profiles induced upon isentropic expansion with one-dimensional numerical simulation

    VTrace-A Tool for Visualizing Traceability Links Among Software Artefacts for an Evolving System

    Full text link
    Traceability Management plays a key role in tracing the life of a requirement through all the specifications produced during the development phase of a software project. A lack of traceability information not only hinders the understanding of the system but also will prove to be a bottleneck in the future maintenance of the system. Projects that maintain traceability information during the development stages somehow fail to upgrade their artefacts or maintain traceability among the different versions of the artefacts that are produced during the maintenance phase. As a result the software artefacts lose the trustworthiness and engineers mostly work from the source code for impact analysis. The goal of our research is on understanding the impact of visualizing traceability links on change management tasks for an evolving system. As part of our research we have implemented a Traceability Visualization Tool-VTrace that manages software artefacts and also enables the visualization of traceability links. The results of our controlled experiment show that subjects who used the tool were more accurate and faster on change management tasks than subjects that didn't use the tool

    VTrace-A Tool for Visualizing Traceability Links among Software Artefacts for an Evolving System

    Get PDF
    Traceability Management plays a key role in tracing the life of a requirement through all the specifications produced during the development phase of a software project. A lack of traceability information not only hinders the understanding of the system but also will prove to be a bottleneck in the future maintenance of the system. Projects that maintain traceability information during the development stages somehow fail to upgrade their artefacts or maintain traceability among the different versions of the artefacts that are produced during the maintenance phase. As a result the software artefacts lose the trustworthiness and engineers mostly work from the source code for impact analysis. The goal of our research is on understanding the impact of visualizing traceability links on change management tasks for an evolving system. As part of our research we have implemented a Traceability Visualization Tool-VTrace that manages software artefacts and also enables the visualization of traceability links. The results of our controlled experiment show that subjects who used the tool were more accurate and faster on change management tasks than subjects that didn’t use the tool

    Mixed-surfactant system of dodecylbenzene sulfonate and alpha-olefin sulfonate: micellar and volumetric studies

    Get PDF
    Critical micelle concentrations of sodium salts of dodecylbenzene sulfonate, α-olefin (C16) sulfonate, and their mixtures have been evaluated by measuring the surface tensions of solutions at 298.15 K. Interaction parameters for mixed monolayer formation (βσ) and mixed-micelle formation (βM) have been calculated from the critical micelle concentration data. Densities of solutions of surfactants and their mixtures were measured with a vibrating-tube densimeter at 298.15 K. Apparent and partial molar volumes have been evaluated from solution density data. Results of the micellar properties have been eplained on the basis of a nonideal multicomponent mixed-micelle model. The mixed-surfactant system exhibits synergism in all aspects when the mole fraction of alpha-olefin sulfonate in the mixture is 0.2. Volumetric properties correlate well, as the partial molar volumes also show a minimum at the same composition of the mixture. Formation of a compact mixed micelle at this composition has been envisaged

    Mass spectrometer calibration of Cosmic Dust Analyzer

    Get PDF
    The time of flight mass spectrometer of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft, is expected to be placed in orbit about Saturn to sample the ring material and satellite impact ejecta. Upon impact of an incident dust particle against the target plate at velocities of 5-100 km/s, some 10–8 to 10–5 times the particle mass of positive valence, single-charged ions is induced. These are analyzed via a time-of-flight mass spectrometer. Initial experiments employing a pulsed N2 laser (>300 µJ/pulse, 4ns, 337nm) acting on a suite of samples are described. The laser beam is focussed to deliver the light pulses onto a laser power density (1011 W/cm2) to simulate the impact of particles. Laser ionization produced a charge of 4.6 pC per pulse for aluminum alloy. Estimating that each Al+1 ion require energy of 5.98 eV ionization energy/ion implies that 10–5% of the laser energy produced ions and the present system has a 5% efficiency of collecting the laser-irradiation induced ions. Employing a multi-channel plate detector in this mass spectrometer yields for Al-Mg-Cu alloy and kamacite (Fe-Ni mineral) targets well defined peaks at 24 (Mg+1), 27 (Al+1) and 64 (Cu+1), and 56 (Fe+1), 58 (Ni+1) and 60 (Ni+1) dalton, respectively

    Mass spectrometer calibration of Cosmic Dust Analyzer

    Get PDF
    The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10^(−8) to 10^(−5) times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N_2 laser (10^(11) W/cm^2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ∼4.6 pC (mostly Al^(+1)), whereas irradiation of a stainless steel target produces a ∼2.8 pC (Fe^(+1)) charge. Thus the present system yields ∼10^(−5)% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg^(+1)), 27(Al^(+1)), and 64 (Cu^(+1)) and 56 (Fe^(+1)), 58 (Ni^(+1)), and 60 (Ni^(+1)) dalton, respectively

    Performance of an Orifice Compensated Two-Lobe Hole-Entry Hybrid Journal Bearing

    Get PDF
    The work presented in this paper aims to study the performance of a two-lobe hole-entry hybrid journal bearing system compensated by orifice restrictors. The Reynolds equation governing the flow of lubricant in the clearance space between the journal and bearing together with the equation of flow through an orifice restrictor has been solved using FEM and Galerkin's method. The bearing performance characteristics results have been simulated for an orifice compensated nonrecessed two-lobe hole-entry hybrid journal bearing symmetric configuration for the various values of offset factor (), restrictor design parameter (2), and the value of external load (0). Further, a comparative study of the performance of a two-lobe hole-entry hybrid journal bearing system with a circular hole-entry symmetric hybrid journal bearing system has also been carried out so that a designer has a better flexibility in choosing a suitable bearing configuration. The simulated numerical results indicate that for the two-lobe symmetric hole-entry hybrid journal bearing system with an offset factor () greater than one provides 30 to 50 percent larger values of direct stiffness and direct damping coefficients as compared to a circular symmetric hole-entry hybrid journal bearing system

    Renormalization group study of the Kondo problem at a junction of several Luttinger wires

    Get PDF
    We study a system consisting of a junction of N quantum wires, where the junction is characterized by a scalar S-matrix, and an impurity spin is coupled to the electrons close to the junction. The wires are modeled as weakly interacting Tomonaga-Luttinger liquids. We derive the renormalization group equations for the Kondo couplings of the spin to the electronic modes on different wires, and analyze the renormalization group flows and fixed points for different values of the initial Kondo couplings and of the junction S-matrix (such as the decoupled S-matrix and the Griffiths S-matrix). We generally find that the Kondo couplings flow towards large and antiferromagnetic values in one of two possible ways. For the Griffiths S-matrix, we study one of the strong coupling flows by a perturbative expansion in the inverse of the Kondo coupling; we find that at large distances, the system approaches the ferromagnetic fixed point of the decoupled S-matrix. For the decoupled S-matrix with antiferromagnetic Kondo couplings and weak inter-electron interactions, the flows are to one of two strong coupling fixed points in which all the channels are strongly coupled to each other through the impurity spin. But strong inter-electron interactions, with K_\rho < N/(N+2), stabilize a multi-channel fixed point in which the coupling between different channels goes to zero. We have also studied the temperature dependence of the conductance at the decoupled and Griffiths S-matrices.Comment: Revtex4, 16 pages including 6 figure

    Crystal structure of Li_2B_(12)H_(12): a possible intermediate species in the decomposition of LiBH_4

    Get PDF
    The crystal structure of solvent-free Li_2B_(12)H_(12) has been determined by powder X-ray diffraction and confirmed by a combination of neutron vibrational spectroscopy and first-principles calculations. This compound is a possible intermediate in the dehydrogenation of LiBH_4, and its structural characterization is crucial for understanding the decomposition and regeneration of LiBH_4. Our results reveal that the structure of Li_2B_(12)H_(12) differs from other known alkali-metal (K, Rb, and Cs) derivatives
    corecore